Boundary Element Methods for Helmholtz Problems With Weakly Imposed Boundary Conditions

نویسندگان

چکیده

We consider boundary element methods where the Calder\'on projector is used for system matrix and conditions are weakly imposed using a particular variational operator designed techniques from augmented Lagrangian methods. Regardless of conditions, both primal trace variable flux approximated. focus on imposition Dirichlet Helmholtz equation, extend analysis Laplace problem \emph{Boundary with conditions} to this case. The theory illustrated by series numerical examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary element methods for potential problems with nonlinear boundary conditions

Galerkin boundary element methods for the solution of novel first kind Steklov–Poincaré and hypersingular operator boundary integral equations with nonlinear perturbations are investigated to solve potential type problems in twoand three-dimensional Lipschitz domains with nonlinear boundary conditions. For the numerical solution of the resulting Newton iterate linear boundary integral equations...

متن کامل

Stabilized boundary element methods for exterior Helmholtz problems

In this paper we describe and analyze some modified boundary element methods to solve exterior boundary value problems for the Helmholtz equation with either Dirichlet or Neumann boundary conditions. The proposed approach avoids spurious modes even in the case of Lipschitz boundaries. Moreover, the regularisation is done based on boundary integral operators which are already available in standa...

متن کامل

Mixed Finite Element Methods for Problems with Robin Boundary Conditions

We derive new a-priori and a-posteriori error estimates for mixed nite element discretizations of second-order elliptic problems with general Robin boundary conditions, parameterized by a non-negative and piecewise constant function ε ≥ 0. The estimates are robust over several orders of magnitude of ε, ranging from pure Dirichlet conditions to pure Neumann conditions. A series of numerical expe...

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2022

ISSN: ['1095-7197', '1064-8275']

DOI: https://doi.org/10.1137/20m1334802